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ABSTRACT
Breast density is known to be an efficient biomarker for

cancer risk, and of particular interest in early breast cancer
detection, when masses are not yet visible. The quantification
of the breast density is difficult due to limitations of mam-
mography imaging, as well as to the ambiguities in defining
the limits of the relevant regions. Though inherently a regres-
sion task, breast density quantification has been typically ap-
proached as a rough classification problem. In this paper, we
model the problem of breast density evaluation as an image-
wise regression task that seeks to quantify the percentage of
fibroglandular tissue. We propose a deep learning method of-
fering a clinically acceptable estimate with low requirements
on expert annotations. We also discuss the use of the X-ray
acquisition parameters as additional input to the neural net-
work. Our best performing model yields an optimistic mean
absolute error around 6.0% of breast density.

Index Terms— mammography, breast density, quantifi-
cation, deep learning, x-ray, ordered classification.

1. INTRODUCTION

Breast cancer is the most prevalent cancer amongst women
and one of the leading causes of death [1]. The chances
of recovery go up to 87% if the cancer is detected in early
stages [2]. Among other variables, the breast density or
mammographic percent density (PD) has been proven to be
an efficient biomarker for breast cancer development risk [3],
with increasing risk for the denser breasts [4]. Thereby, the
breast density evaluation has become mandatory in United
States following the Breast Density reporting law and the
recommendations of the American College or Radiology.

Percent density (PD) is the ratio of the amount of fibrog-
landular tissue to the overall breast volume, correlated to the
breast dimension and elasticity. Clinical protocols include
an approximate classification of the density. For instance,
the Breast imaging-reporting and data system (BI-RADS
4th-ed.), defines 4 classes according to the percentage of
surface occupied by the dense tissue as follows: Class 1
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Fig. 1. Left to right, types 1 to 4 according to BI-RADS 4th ed.

- [0%, 25%), Class 2 - [25%, 50%), Class 3 -[50%, 75%),
Class 4 - [75%, 100%] (See Fig. 1 for illustration).

In this work, we target a data-driven computer-aided solu-
tion for quantification of breast density from Full Field Digital
Mammography (FFDM) images. There are several challenges
associated to this goal.

First, expert labels are difficult to gather. Clinical proto-
cols only require a rough classification after visual inspection
of the image, while the delineation of the relevant tissue in
research protocols is subject to a large intra-expert variabil-
ity [5]. Second, the mammography summarizes the volumet-
ric information in a 2-D projection.

Finally, mammographic acquisition parameters such as
exposure time, current, voltage are calibrated to adapt to each
breast, and in particular to its density, using automatic expo-
sure control (AEC) [6], and thereby leading to images with
different aspect.

We propose a machine learning method to quantify breast
density. Given the challenges above, we believe that building
a suitable dataset for precise supervised segmentation of the
fibroglandular tissue is impractical. Instead, we argue that
a finer-grained breast density analysis, closer to the inherent
regression nature of the problem, may be enough provide the
required support for more personalized treatment. Therefore,
we approach the regression task as an ordinal classification
problem, and propose to consider 12 classes instead of 4.

Moreover, to cope with the influence of the machine pa-
rameters, we propose to combine the image with acquisition
parameters and demonstrate an improved performance over
the image-only based approach. To the best of our knowledge,
we are the first to treat finer grained ordered classification for
breast density estimation and to consider the acquisition pa-
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rameters model allowing to quantify breast density.

2. RELATED WORK

Multiple contributions have been recently made in the field
of mammography image analysis, in particular, by means of
deep learning techniques. Amongst them, several works have
focused on the detection, localization, segmentation and clas-
sification of mass lesions and microcalcifications [7, 8, 9, 10].

While considerable achievements have been shown, mass
detection is not suitable for early breast cancer detection task,
as masses are not yet detectable. Therefore, more relevant
biomarkers, such as breast density, are needed.

Arefan et al. [11] were amongst the first to propose the use
of the deep learning techniques for the estimation of the breast
density using a classification approach with 3-categories
(Fatty, Glandular, Dense) with high accuracy scores. Mo-
hamed et al. [12] deals with 2-categories classification, while
and Wu et al. [13] extended the task to 4 classes. In all three
cases, such approximate estimations are not precise enough
to allow personalized patient treatment.

Li et al. [14] and Wei et al. [15] focus instead on the
dense tissue segmentation task, showing promising results
with deep learning techniques. We argue, however, that
such segmentation approaches are impractical, given the de-
manding requirements on expert annotations for training and
validation.

We propose a different approach to breast density quan-
tification compared to the state of the art [13, 14, 16, 17]
introducing an alternative to both, classification and pixel-
wise segmentation techniques. Our contributions over prior
work include: i) approaching the breast density quantification
with a regression model ii) proposing an extended BI-RADS
classification system which leads to a higher precision, and
iii), considering the acquisition parameters as input-features
to our model in order to better cope with x-ray specificities.

3. METHODS

Percent density (i.e. percentage of the fibroblandular tissue)
may be specified as:

PD =
FT

V
,

with FT the amount of the fibroglandular tissue and V the
overall volume of the breast. We aim to estimate the PD
value for the whole breast by analyzing the whole FFDM
image and having access to acquisition parameters. We as-
sume PD varies from 0% to 100%, excluding the skin en-
velope from the breast volume V . Our goal is to build a
model f capable of predicting an estimate of the breast den-
sity d̂i ∈ [0, 100], given one FFDM image Ii and its acquisi-
tion parameters pi.

d̂i = f(Ii, pi)

To address this problem with a data-driven machine learning
approach, we collect a dataset of N images with their pa-
rameters and target values, i.e. {Ii, pi, di}Ni=1. Each vector
of acquisition parameters contains the following information:
voltage (kV ), exposure time (ms), tube current (mA), expo-
sure (mAs), entrance Dose (μGy) and retained dose (dGy),
as well as compression force (N ), angle (deg), breast thick-
ness (mm) and projection area (mm2).

Given the impracticality of collecting continuous (3D
pixel-wise) expert annotations, we propose to extend the
current classification standard grid to better address our re-
gression task. First, we use the 4-class BI-RADS grid with
a span of 25% per class. Then, we ask the expert radiologist
to further grade the images in each class among three sub-
classes, leading to a 12-class grid with a ~8.5% density span
per class (see Fig. 2). Finally, since we use a regression loss
on classification labels, our problem ends up being an ordinal
classification, which exploits the distance to the target class
to guide the learning process.
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Fig. 2. 4- and 12-class grid and corresponding breast densities
in percentage.

We use a deep neural network to model f , and evaluate
the effect of different losses and model choices. We used the
Mean Absolute Error (MAE) and Mean Squared Error (MSE)
as regression losses. For comparison, categorical cross en-
tropy loss was used as target function for the initial classifica-
tion task.

Our final model freg12−metapar is represented in Fig. 3. It
relies on a VGG-like network pre-trained on the 4-class clas-
sification problem and fine-tuned to solve the regression task
with 12 possible target values. Note that doing a pre-training
reduces the amount of additional fine-grid expert annotations
required, so we only use extended labels for 25% of the train-
set images.

We additionally study four other approaches for compar-
ison: (1) 4-class classification, (2) 4-class regression without
parameters, (3) 12-class fine-tuning regression and (4) 4-class
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Fig. 3. Fusion model with concatenated image and acquisi-
tion parameters branches.
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regression with parameters.
As a proof of concept, we add the information from the

acquisition parameters as features of a parallel processing
branch. Both the image and the acquisition parameters are
passed through dense layers before being concatenated. The
output of the concatenation was fed to a large dense layer
before being inserted into the final regression layer.

The motivation for the baseline 4-class classification
fclass4 is the practical availability of the ground truth since
the classes are given systematically by the radiologist in the
clinical routine.

To highlight the advantages of training with a regression
loss, we also address the coarse 4-class grid with freg4 using
the same training dataset and network from fclass4, except for
replacing the top classification layers of fclass4 with a regres-
sion layer. Other settings of the network remained identical.

Finally, we rely on the pre-trained classification model
fclass4 to resolve the finer-grid regression task freg12. As
before, the top classification layer was replaced with a re-
gression layer, while all other settings remained identical.
For fine-tuning, we used again the smaller dataset containing
more precise expert-annotations with 12 target values.

3.1. Network implementation and optimisation details

We used the same neural network for all methods: a VGG-
like [18] architecture known to be efficient for mammography
[10]. The network is composed of six blocks of two convolu-
tional layers each with number of filters as follows: 32/32 -
64/64 - 128/128 - 256/256 - 256/256 - 512/512. The ker-
nels of all convolutional filters are set to 3 × 3. After each
convolutional layer with ReLU activation we perform batch
normalization. At the end of each block, we have a max pool-
ing layer with pool size of 2× 2 and strides of 2× 2. Finally,
after the convolutional network we added two dense layers.
For the classification the result of dense layers has been fed
to a 4-classes prediction layer. As for regression network, we
only replaced the prediction layer by 1-class regression layer.

The architecture choice for the acquisition parameters
branch followed an independent set of experiments to identify
the best performing regression model based on the parame-
ters only. The most efficient retained model was the one wide
dense layer network.

4. EXPERIMENTAL VALIDATION

4.1. Dataset

Publicly available datasets, such as Digital Database for
Screening Mammography (DDSM) or INBreast do not pro-
vide the required fine density annotations neither acquisition
parameters. Thus, we collected an in-house dataset composed
of 1602 images from 283 patients and 434 different exams.
It includes images from both the cranocaudal (CC) and the
mediolateral oblique (MLO) views. The dataset is split in

training and test sets, which remains the same throughout
the experiments. The train set contains 1232 images (70%)
and the test set the remaining 370 images (30%). The split
ensures that different views of the same breast are kept in the
same subset.

All images have been labeled by an expert breast imaging
radiologist using the 4th edition of BI-RADS classification
system. Moreover, in order to train the system efficiently for
the regression task, a subset of 282 training images as well as
the total number of test images (370) were annotated with the
extended 12-class system (see Fig. 2). In order to diminish
eventual bias associated with the lack of multiple expert opin-
ion, the same data were evaluated by the expert three times
under different conditions (e.g. on different workstations).
The final target value used for each image is the majority vot-
ing value(i.e. 2 out of 3).

We note that the use of the more precise ground truth such
as MRI may be beneficial for the model performance, how-
ever the breast MRI data are usually less common in clinical
practice so their collection needs bigger efforts.

The images have been pre-processed as follows: (1) crop
to remove empty background pixels, (2) re-scale the image
setting its longer side to 256 pixels, (3) if necessary, flip the
image horizontally to systematically align the pectoral muscle
to the left and (4) pad the shortest edge of the image with
empty pixels to obtain a squared 256× 256 image.

4.2. Network training

For all models, the training has been performed per epoch
on the entire training dataset. In total, 1000 epochs were let
to run for each model. The validation has been performed
on the entire test dataset after every 25 epoch. In order to
prevent any unnatural image modification we did not use any
augmentation.

While training the model for classification, we applied
class weighing in order to compensate for imbalance. Also,
for the final model, we pre-trained separately both the image
and the acquisition-parameters branches to favor the overall
convergence of the model.

4.3. Validation details

We evaluated classification and regression performance of the
5 studied models with the objective to prove the advantages of
the regression approach over the classification, as well as the
benefits of the proposed network and training modifications.

The tests were performed systematically on the same
dataset of 370 images, which contains both 4 and 12 class
annotations. The classification performances were collected
on the 4-classes grid, while the regression performances were
systematically compared against 12-class annotations.

For the assessment of classification performance we used
the following metrics: accuracy, precision, recall, F1-score
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Table 1. Classification performances of the studied models
Metrics

Model Accuracy Precision Recall F1 -score Cohen kappa
fclass4 0.741

CI: 0.729 - 0.752
0.749
CI: 0.739 - 0.758

0.741
CI: 0.729 - 0.752

0.738
CI: 0.726 - 0.750

0.850
CI: 0.838 - 0.863

freg4 0.759
CI: 0.740 - 0.779

0.780
CI: 0.767 - 0.793

0.759
CI: 0.740 - 0.779

0.762
CI: 0.741 - 0.782

0.879
CI: 0.858 - 0.900

freg12 0.764
CI: 0.757 - 0.771

0.782
CI: 0.778 - 0.786

0.764
CI: 0.757 - 0.771

0.766
CI: 0.760 - 0.773

0.891
CI: 0.887 - 0.896

freg4−metapar
(fixed weights)

0.784
CI: 0.782 - 0.786

0.800
CI: 0.798 - 0.801

0.784
CI: 0.782 - 0.786

0.787
CI: 0.785 - 0.788

0.899
CI: 0.898 - 0.901

freg12−metapar
(fixed weights)

0.796
CI: 0.792 - 0.800

0.811
CI: 0.808 - 0.814

0.796
CI: 0.792 - 0.800

0.797
CI: 0.793 - 0.800

0.906
CI: 0.904 - 0.908

Table 2. Regression performances of the studied models
Metrics

Model MAE MxAE C-index
fclass4 8.873 CI: 8.510 - 9.236 68.590 CI: 65.250 - 71.930 0.809 CI: 0.802 - 0.816

freg4 7.520 CI: 6.743 - 8.298 40.640 CI: 36.036 - 45.244 0.826 CI: 0.821 - 0.832

freg12 6.545 CI: 6.379 - 6.712 31.964 CI: 31.214 - 32.714 0.820 CI: 0.815 - 0.824

freg4−metapar
(fixed weights)

6.434 CI: 6.397 - 6.471 30.274 CI: 29.293 - 31.256 0.831 CI: 0.827 - 0.835

freg12−metapar
(fixed weights)

6.092 CI: 6.030 - 6.154 28.113 CI: 27.541 - 28.685 0.843 CI: 0.840 - 0.847

Table 3. Confusion matrix of Classifica-
tion model fclass4

Predictions
Truth 1 2 3 4
1 41 11 0 0
2 8 80 4 0
3 2 23 41 20
4 0 4 11 125

Table 4. Confusion matrix of Fine-
trained regression model freg4−metapar

Predictions
Truth 1 2 3 4
1 34 18 0 0
2 2 70 20 0
3 0 5 68 13
4 0 0 10 130

and Cohen’s kappa [19] comparing the agreement of the al-
gorithm with the expert. For the regression task we relied
essentially on the mean absolute error (MAE). We also report
the maximum absolute error (MxAE), which is the maximum
value amongst all the absolute errors on test dataset.

The interest of the MxAE is to highlight the maximum
span of the misclassification that may be critical in clinical
application. Moreover, we also compared the concordance
index to evaluate how well the predictions of the different
models respect the class orders.

We report the mean and confidence intervals (CI) of the
metrics computed at several time points during the training,
starting from epoch 200, where our models started to con-
verge. The CIs are all calculated with 0.95 confidence.

5. RESULTS

In Tab. 1, we report the classification performance. The three
image models have comparable results, while freg12−metapar

presents an advantage on all metrics and a 5% accuracy in-
crease. The disadvantages of the straightforward classifica-
tion approach are highlighted by the MxAE (see Tab. 2) and
the confusion matrice in Tab. 3: they lead to critical misclas-
sification errors (> 50%). In this sense, the regression task is
safer, with the freg4 notably decreases MxAE from 68.6%
to 40.6%, and our freg12 further decreasing such errors to
31.96% (see Tab. 2). While we observe worse performance
on 1st and 2nd classes, we note the benefit of smaller error
span, as well as lower density underestimation (see Tab. 4).

Adding the meta-parameters to our model yielded an
additional increase in performance. We note the benefit of
freg12−metapar compared to freg4−metapar. We observe a
gain in MxAE (28.1%) and an increase in accuracy (0.796)
compared to freg12.

We experimented with fine-tuning of the entire model ver-
sus the dense layers only. In case of freg12 we observed an

eventual leak of MxAE (i.e. MxAE > 75%) when the con-
volutional layers weights were trainable.

During our work we were able to estimate an intra-reader
kappa of k = 0.93, having evaluated the dataset multiple
times. Remarkably, our best performing model yields similar
agreement (k = 0.906) to the expert, showing the capability
of the system to reproduce reader’s behavior.

6. DISCUSSION AND CONCLUSION

We have studied the problem of breast density quantifica-
tion with the limitations of clinically available annotations.
We evaluated classification and regression approaches us-
ing fine tuning on a small but fine-grained dataset. This
allowed us to obtain a performant model with an accuracy of
(0.796 CI: 0.792 - 0.800) and mean absolute error of (6.092
CI: 6.030 - 6.154). Our method suits well two tasks, regres-
sion for quantitive and classification for qualitative analyses.
The MxAE error is brought to 28.1%, which is comparable
to one class step in the BI-RADS 4ed grid. We observe in-
crease of the performance with both, 12-class annotations
and inclusion of meta-parameters. The 4-class model with
meta-parameters is the runner-up proving the usefullness of
acquisition data.

Our solution has several clinical applications. First, it of-
fers a clinically acceptable estimation of breast density, which
is in increasing demand. Second, the proposed fine breast
density quantification provides additional guidance for per-
sonalized healthcare. Third, the system may help radiologist
in daily routine by prioritizing cases accessing more com-
plex cases at the moments of higher awareness. Lastly, it
contributes further to the consideration of breast density as
biomarker.

Future research includes collecting annotations from mul-
tiple reviewers and studying other means to include the acqui-
sition parameters.
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Franca Bianchini, and Kurt Straif, “Breast-Cancer
Screening Viewpoint of the IARC Working Group,”
New England Journal of Medicine, vol. 372, no. 24, pp.
2353–2358, jun 2015.

[3] Celine M. Vachon, Carla H. van Gils, Thomas A.
Sellers, Karthik Ghosh, Sandhya Pruthi, Kathleen R.
Brandt, and V. Shane Pankratz, “Mammographic den-
sity, breast cancer risk and risk prediction,” Breast Can-
cer Research, vol. 9, no. 6, pp. 217, dec 2007.

[4] Norman F. Boyd, Helen Guo, Lisa J. Martin, Limei Sun,
Jennifer Stone, Eve Fishell, Roberta A. Jong, Greg His-
lop, Anna Chiarelli, Salomon Minkin, and Martin J.
Yaffe, “Mammographic Density and the Risk and De-
tection of Breast Cancer,” New England Journal of
Medicine, vol. 356, no. 3, pp. 227–236, 2007.

[5] Afsaneh Alikhassi, Hamed Esmaili Gourabi, and Ma-
soud Baikpour, “Comparison of inter- and intra-
observer variability of breast density assessments using
the fourth and fifth editions of Breast Imaging Report-
ing and Data System,” European Journal of Radiology
Open, vol. 5, pp. 67–72, 2018.

[6] S Sterling, “Automatic exposure control: a primer,” Ra-
diol Technol, vol. 59, no. 5, pp. 421–427, 1988.

[7] Gustavo Carneiro, Jacinto Nascimento, and Andrew P.
Bradley, “Automated Analysis of Unregistered Multi-
View Mammograms with Deep Learning,” IEEE Trans-
actions on Medical Imaging, vol. 36, no. 11, pp. 2355–
2365, nov 2017.

[8] Neeraj Dhungel, Gustavo Carneiro, and Andrew P.
Bradley, “A deep learning approach for the analysis
of masses in mammograms with minimal user interven-
tion,” Medical Image Analysis, vol. 37, pp. 114–128,
2017.

[9] Thijs Kooi, Geert Litjens, Bram van Ginneken, Albert
Gubern-Mérida, Clara I. Sánchez, Ritse Mann, Ard den
Heeten, and Nico Karssemeijer, “Large scale deep
learning for computer aided detection of mammographic
lesions,” Medical Image Analysis, vol. 35, pp. 303–312,
jan 2017.

[10] Dezso Ribli, Anna Horváth, Zsuzsa Unger, Péter Poll-
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